Potent Vasoconstrictor Kisspeptin‐10 Induces Atherosclerotic Plaque Progression and Instability: Reversal by its Receptor GPR54 Antagonist
نویسندگان
چکیده
BACKGROUND Kisspeptin-10 (KP-10), a potent vasoconstrictor and inhibitor of angiogenesis, and its receptor, GPR54, have currently received much attention in relation to pre-eclampsia. However, it still remains unknown whether KP-10 could affect atherogenesis. METHODS AND RESULTS We evaluated the effects of KP-10 on human umbilical vein endothelial cells, human monocyte-derived macrophages, human aortic smooth muscle cells in vitro, and atherosclerotic lesions in apolipoprotein E-deficient (ApoE-/-) mice in vivo. KP-10 significantly increased the adhesion of human monocytes to human umbilical vein endothelial cells, which was significantly inhibited by pretreatment with P234, a GPR54 antagonist. KP-10 stimulated mRNA expression of tumor necrosis factor-α, interleukin-6, monocyte chemotactic protein-1, intercellular adhesion molecule-1, vascular adhesion molecule-1, and E-selectin in human umbilical vein endothelial cells. KP-10 significantly enhanced oxidized low-density lipoprotein-induced foam cell formation associated with upregulation of CD36 and acyl-CoA:cholesterol acyltransferase-1 in human monocyte-derived macrophages. In human aortic smooth muscle cells, KP-10 significantly suppressed angiotensin II-induced migration and proliferation, but enhanced apoptosis and activities of matrix metalloproteinase (MMP)-2 and MMP-9 by upregulation of extracellular signal-regulated kinase 1 and 2, p38, Bcl-2-associated X protein, and caspase-3. Four-week-infusion of KP-10 into ApoE-/- mice significantly accelerated the development of aortic atherosclerotic lesions with increased monocyte/macrophage infiltration and vascular inflammation as well as decreased intraplaque vascular smooth muscle cells contents. Proatherosclerotic effects of endogenous and exogenous KP-10 were completely canceled by P234 infusion in ApoE-/- mice. CONCLUSIONS Our results suggest that KP-10 may contribute to accelerate the progression and instability of atheromatous plaques, leading to plaque rupture. The GPR54 antagonist may be useful for prevention and treatment of atherosclerosis. Thus, the KP-10/GPR54 system may serve as a novel therapeutic target for atherosclerotic diseases.
منابع مشابه
Characterization of the receptor binding residues of kisspeptins by positional scanning using peptide photoaffinity probes.
Kisspeptins, endogenous peptide ligands for GPR54, play an important role in GnRH secretion. Since in vivo administration of kisspeptins induces increased plasma LH levels, GPR54 agonists hold promise as therapeutic agents for the treatment of hormonal secretion diseases. To facilitate the design of novel potent GPR54 ligands, residues in kisspeptins that involve in the interaction with GPR54 w...
متن کاملDevelopment and Aging of the Kisspeptin–GPR54 System in the Mammalian Brain: What are the Impacts on Female Reproductive Function?
The prominent role of the G protein coupled receptor GPR54 and its peptide ligand kisspeptin in the progression of puberty has been extensively documented in many mammalian species including humans. Kisspeptins are very potent gonadotropin-releasing hormone secretagogues produced by two main populations of neurons located in two ventral forebrain regions, the preoptic area and the arcuate nucle...
متن کاملGPR54-Dependent Stimulation of Luteinizing Hormone Secretion by Neurokinin B in Prepubertal Rats
Kisspeptin, neurokinin B (NKB) and dynorphin A (Dyn) are coexpressed within KNDy neurons that project from the hypothalamic arcuate nucleus (ARC) to GnRH neurons and numerous other hypothalamic targets. Each of the KNDy neuropeptides has been implicated in regulating pulsatile GnRH/LH secretion. In isolation, kisspeptin is generally known to stimulate, and Dyn to inhibit LH secretion. However, ...
متن کاملKisspeptin-GPR54 signaling in mouse NO-synthesizing neurons participates in the hypothalamic control of ovulation.
Reproduction is controlled in the brain by a neural network that drives the secretion of gonadotropin-releasing hormone (GnRH). Various permissive homeostatic signals must be integrated to achieve ovulation in mammals. However, the neural events controlling the timely activation of GnRH neurons are not completely understood. Here we show that kisspeptin, a potent activator of GnRH neuronal acti...
متن کاملActivation of gonadotropin-releasing hormone neurons by kisspeptin as a neuroendocrine switch for the onset of puberty.
We examined the role of kisspeptin and its receptor, the G-protein-coupled receptor GPR54, in governing the onset of puberty in the mouse. In the adult male and female mouse, kisspeptin (10-100 nM) evoked a remarkably potent, long-lasting depolarization of >90% of gonadotropin-releasing hormone (GnRH)-green fluorescent protein neurons in situ. In contrast, in juvenile [postnatal day 8 (P8) to P...
متن کامل